Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Miao Du* and Xiao-Jun Zhao

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail:
dumiao@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
R factor $=0.030$
$w R$ factor $=0.064$
Data-to-parameter ratio $=11.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The two-dimensional coordination polymer poly[[silver(I)-di- μ-1,5-bis(phenylsulfanyl)pentane] tetrafluoroborate]

A two-dimensional silver(I) coordination polymer, $\left\{\left[\operatorname{Ag}(L)_{2}\right] \mathrm{BF}_{4}\right\}_{n}$, has been formed from AgBF_{4} and 1,5bis(phenylsulfanyl)pentane ($L, \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~S}_{2}$), in which each silver(I) center is coordinated by four S atoms from distinct ligands and displays a distorted tetrahedral geometry. Each ligand links two Ag^{I} atoms to form an infinite two-dimensional (4,4)-grid-like network. The $\mathrm{BF}_{4}{ }^{-}$ions are incorporated into the cavities of the coordination framework to complete and stabilize the structure.

Comment

The crystal engineering of one-, two- and three-dimensional coordination polymers is currently attracting considerable attention, not only because of their novel topologies and fascinating structural diversities, but also for their potential applications in optical, electrical, magnetic and microporous materials (Blake et al., 1999; Hagrman et al., 1999; Evans \& Lin, 2002). In the past decade, a variety of discrete and a wide range of one- or multi-dimensional infinite solid-state coordination architectures have been achieved by chemists. It is well known that the overall topology of coordination polymers depends mainly on the coordination preferences of metal centers and the backbone of bridging ligands. The rational design of organic building blocks plays a key role in adjusting the coordination frameworks, and the nature of the coordinating donors may lead to the formation of unique networks with desired properties and functions. We report here an Ag^{I} complex, namely poly[[silver(I)-di- $\mu-1,5$-bis(phenylsulfanyl)pentane] tetrafluoroborate], (I), which forms a unique macrometallacyclic lamellar network using the flexible dithioether ligand 1,5 -bis(phenylsulfanyl)pentane, L, as the building block.

(I)

A two-dimensional silver(I) coordination polymer is found for the $\left[\operatorname{Ag}(L)_{2}\right]^{+}$cation of (I). As depicted in Fig. 1, each silver(I) center is coordinated by four S donors from four

Received 26 November 2003
Accepted 12 December 2003
Online 17 January 2004

Figure 1
Coordination environment of silver(I) in the structure of (I) (the $\mathrm{BF}_{4}{ }^{-}$ ion has been omitted for clarity), with displacement ellipsoids drawn at the 30% probability level. Atoms with suffixes A and B are related to those with no suffixes by the symmetry codes $(x, y-1, z)$ and $(1+x, y, z)$, respectively.

Figure 2
View of the 32 -membered $\mathrm{Ag}_{4} \mathrm{~L}_{4}$ macrometallacyclic repeating unit of (I).
distinct ligands, displaying a distorted tetrahedral geometry (see Table 1 for selected geometric parameters), and is thus connected to four other adjacent silver(I) centers by four ligands, forming a 32 -membered macrometallocyclic $\left[\mathrm{Ag}_{4} L_{4}\right]$ repeating unit, with dimensions of $10.18 \times 9.21 \AA^{2}$, in which four Ag^{I} atoms are coplanar, as shown in Fig. 2. There are two configurations, A and B, for the ligand molecules. In type A, L links adjacent Ag^{I} atoms in a cis-mode; the two phenyl groups of L are located on the same side of the Ag_{4} plane, with a C6$\mathrm{S} 1-\mathrm{S} 2-\mathrm{C} 12$ torsion angle (between two $\mathrm{S} / \mathrm{C}_{\mathrm{Ph}}$ units) of $35.3(4)^{\circ}$, and a dihedral angle between the phenyl groups of

Figure 3
View of the two-dimensional rectanglar network of (I).
$29.2(4)^{\circ}$. In contrast with conformation A, L in type B adopts a trans-mode; the phenyl groups of L [dihedral angle: $94.3(3)^{\circ}$] are located on opposite sides of the Ag_{4} plane, forming a $\mathrm{C} 29-\mathrm{S} 3-\mathrm{S} 4-\mathrm{C} 23$ torsion angle of $-179.5(4)^{\circ}$. The $\mathrm{BF}_{4}{ }^{-}$ions are incorporated in the cavities of the repeating units to balance the charge, and have a special templating effect in building up this coordination polymer. Adjacent rectangular rings are fused in a parquet-like pattern to form an infinite lamellar $(4,4)$ coordination framework parallel to (110), as shown in Fig. 3. Examination of the structure with PLATON (Spek, 2003) indicates that there are no solventaccessible voids or $\pi-\pi$ stacking interactions in the crystal structure of (I).

Experimental

1,5-Bis(phenylsulfanyl)pentane (L) was prepared according to the procedure reported by Shao et al. (1991). $\mathrm{AgBF}_{4}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ in acetone (5 ml) was added slowly to a solution of $L(29 \mathrm{mg}, 0.1 \mathrm{mmol})$ in chloroform (5 ml). The mixture was refluxed for 30 min and allowed to stand at room temperature. Colorless well shaped single crystals were obtained by slow evaporation of the solvent (yield 55%). IR (KBr pellet, cm^{-1}): $2929(s), 2855(m), 1584(s), 1479(v s)$, 1459 (m), 1438 (s), 1384 (w), 1301 (m), 1271 (w), 1232 (m), 1089 ($v s$), $1055(\mathrm{vs}), 738(\mathrm{vs}), 690(\mathrm{vs}), 616(\mathrm{w}), 534(\mathrm{~m}), 522(\mathrm{~m}), 482(\mathrm{~m}), 473$ (m). Analysis calculated for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{AgBF}_{4} \mathrm{~S}_{4}$: C 52.93 , H 5.23%; found: C $52.84, \mathrm{H} 5.11 \%$.

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~S}_{2}\right)_{2}\right] \mathrm{BF}_{4}$	$D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=771.62$	Mo $K \alpha$ radiation
Monoclinic, Pn	Cell parameters from 981
$a=9.209(3) \AA \AA$	\quad reflections
$b=10.182(3) \AA$	$\mu=3.1-19.7^{\circ}$
$c=19.158(5) \AA$	$T=2.86 \mathrm{~mm}^{-1}$
$\beta=103.507(5)^{\circ}$	Prism, colorless
$V=1746.7(9) \AA^{3}$	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
$Z=2$	

[^0]
Data collection

Bruker SMART 1000
diffractometer
ω scans
Absorption correction: multi-scan SADABS (Sheldrick, 1997)
$T_{\min }=0.782, T_{\max }=0.847$
7056 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.064$
$S=1.07$
5074 reflections
425 parameters
H -atom parameters constrained

5074 independent reflections
4519 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-8 \rightarrow 12$
$l=-22 \rightarrow 22$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.03 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack (1983);
1989 Friedel pairs
Flack parameter $=0.00(2)$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Ag} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.5884(13)$	$\mathrm{Ag} 1-\mathrm{S} 2$	$2.6300(13)$
$\mathrm{Ag} 1-\mathrm{S} 4$	$2.5985(12)$	$\mathrm{Ag} 1-\mathrm{S} 3^{\mathrm{ii}}$	$2.6772(12)$
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{S} 4$	$122.83(4)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{S} 3^{\mathrm{ii}}$	$97.69(4)$
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{S} 2$	$105.46(3)$	$\mathrm{S} 4-\mathrm{Ag} 1-\mathrm{S} 3^{\mathrm{ii}}$	$99.69(3)$
$\mathrm{S} 4-\mathrm{Ag} 1-\mathrm{S} 2$	$120.91(4)$	$\mathrm{S} 2-\mathrm{Ag} 1-\mathrm{S} 3{ }^{\mathrm{ii}}$	$105.81(4)$

Symmetry codes: (i) $x, y-1, z$; (ii) $1+x, y, z$.
Although most H atoms were visible in difference maps, all H atoms were placed in calculated positions ($0.97 \AA$ for methylene CH and $0.93 \AA$ for aromatic $\mathrm{C}-\mathrm{H}$) and included in the final refinement
in the riding-model approximation, with displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: $S M A R T$ (Bruker, 1998); cell refinement: $S M A R T$; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from the Starting Funding of Tianjin Normal University and the Natural Science Foundation of Tianjin Education Commission (to MD). The authors also thank Professor Xian-He Bu for his kind help.

References

Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby M. A. \& Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.
Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS, Madison, Wisconsin, USA.
Evans, O. R. \& Lin, W. (2002). Acc. Chem. Res. 35, 511-522.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hagrman, P. J., Hagrman, D. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.
Shao, P. X., Yao, X. K., Wang, H. G., Wang, W. H., Luo, L. W., Wang, W. H., Wang, W. Z. \& Wang, Z. T. (1991). Acta Chim. Sinica, 49, 677-680.
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SADABS. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: $D_{x}=1.467 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 981 reflections
 $\mu=0.86 \mathrm{~mm}^{-1}$
 $T=293$ (2) K
 $0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

